
We mostly follow chapters 8 and 24 of Jech, and occasionally the handbook chapter by Abraham
and Magidor, or the survey Notes on singular cardinal combinatorics by Cummings.

1 Inductive formula

Some basic facts:

κcf(κ) > κ by König lemma. Also κcf(κ) ≤ κκ = 2κ.

The inductive formula for cardinal arithmetic reduces the value of a cardinal exponentiation κλ
to values at smaller κ or λ. The cases when either κ or λ is finite are clear, so suppose they are
infinite.

(i) If ∃η < κ ηλ ≥ κ (in particular if κ ≤ 2λ), then κλ ≤ (ηλ)λ = ηλ, so κλ = ηλ.

(ii) Now suppose ∀η < κ ηλ < κ. In particular λ < 2λ < κ. Write κ = limα→cf(κ) κα, where
cf(κ) ≤ κ.

(a) If λ < cf(κ) then every f : λ → κ is bounded, so κλ ≤
∑

η<κ η
λ = κ, and κλ = κ. Note that

this case happens if κ is regular.

(b) If λ ≥ cf(κ), then to each f : λ → κ associate the sequence (fα : α < cf(κ)) where fα is the
truncation of f below κα, i.e., dom(fα) = λ, fα(i) = f(i) if f(i) < κα and fα(i) = 0 otherwise. The
map f 7→ (fα)α<cf(κ) is injective, and by assumption κλα < κ, so κλ ≤ κcf(κ). Therefore κλ = κcf(κ).

Next we show that 2λ can also be reduced in some sense, in case λ is singular (if λ is regular
then there isn’t much to say due to Easton’s theorem). Write λ = limα→cf(λ) λα. To each f : λ → 2,
associate the sequence (fα : α < cf(λ)) where fα is the restriction of f to λα. The map f 7→ (fα)α<cf(λ)
is injective, so 2λ ≤

∏
α<cf(λ) 2λα ; on the other hand

∏
α<cf(λ) 2λα ≤

∏
α<cf(λ) 2λ = 2λ, so actually

equality holds.

(i) If λ is a strong limit, i.e., 2λα < λ for all α, then
∏
α<cf(λ) 2λα ≤

∏
α<cf(λ) λ = λcf(λ), so

2λ = λcf(λ).

(ii) If 2λα ≥ λ for some α, then we actually have 2λα = 2λα·cf(λ) ≥ λcf(λ) > λ for large enough α.
Consider the sequence (2λα : α < cf(λ)).

(a) If this sequence is eventually constant, i.e., there exists β < cf(λ) s.t. 2λα = 2λβ for all α ≥ β,
then

∏
α<cf(λ) 2λα ≤

∏
α<cf(λ) 2λβ = 2λβ ·cf(λ) = 2λβ . Therefore 2λ = 2λβ .

(b) If this sequence is not eventually constant, then
∏
α<cf(λ) 2λα = (supα<cf(λ) 2λα)cf(λ); ≤ is

clear and ≥ follows by partitioning cf(λ) into cf(λ) many unbounded sets. Since the cardinal
η := supα<cf(λ) 2λα has cofinality cf(λ), we can rewrite the equation as 2λ = ηcf(η).

A consequence is that any κλ is equal to the power of a regular cardinal or the value of gimel
function at a singular cardinal.
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2 Silver’s theorem and Galvin-Hajnal theorem

There are two slightly different versions of Singular Cardinal Hypothesis.

SCH1: if κ is a strong limit singular cardinal, then 2κ = κ+.

SCH2: if κ is a singular cardinal and 2cf(κ) < κ, then κcf(κ) = κ+.

Both versions follow from GCH trivially. By the inductive formula, if κ is a strong limit then
2κ = κcf(κ), so SCH2 implies SCH1. It is known that both ¬SCH1 and ¬SCH2 are equiconsistent
with a measurable cardinal κ of Mitchell order κ++; roughly speaking, κ has Mitchell order 0 if it is
measurable, and Mitchell order 1 if the set of measurables below κ has measure 1, etc.

Silver’s theorem says either form of SCH cannot fail for the first time at a singular cardinal of
uncountable cofinality. The original proof used generic ultrapower; a purely combinatorial proof
was found soon afterwards. For brevity we show the special case that SCH1 cannot first fail at ℵω1 ;
the proof for SCH2 and for general case is almost identical.

Thus we assume ℵω1 is a strong limit and SCH1 holds below ℵω1 , and derive that 2ℵω1 = ℵω1+1.
By a standard closure argument, C := {α < ω1 : α is a limit and ∀β < α 2ℵβ < ℵα} is a club. Since
SCH1 holds below ℵω1 , we have 2ℵα = ℵα+1 for all α ∈ C. It is thus sufficient to show that if
{α < ω1 : 2ℵα = ℵα+1} contains a club then 2ℵω1 = ℵω1+1; actually it suffices to assume this set is
stationary.

To each X ⊆ ℵω1 associate the sequence fX = ⟨X∩ℵα : α < ω1⟩, which belongs to
∏
α<ω1

P(ℵα).
Then F := {fX : X ⊆ ℵω1} is an almost disjoint family, i.e., for any different f, g ∈ F , there exists
β < ω1 s.t. f(α) ̸= g(α) for all α ≥ β. The map X 7→ fX is clearly injective. Thus we are done if
we can prove:

Lemma 2.1. Suppose ℵω1 is a strong limit, ⟨Aα : α < ω1⟩ is a sequence of sets, F ⊆
∏
α<ω1

Aα is
an almost disjoint family of functions, and {α < ω1 : |Aα| ≤ ℵα+1} is stationary, then |F| ≤ ℵω1+1.

First we show the following related result.

Lemma 2.2. Suppose ℵω1 is a strong limit, ⟨Aα : α < ω1⟩ is a sequence of sets, F ⊆
∏
α<ω1

Aα is
an almost disjoint family of functions, and {α < ω1 : |Aα| ≤ ℵα} is stationary, then |F| ≤ ℵω1.

Proof. Of course S := {α < ω1 : α is a limit and |Aα| ≤ ℵα} is also stationary. We may assume
every Aα is a cardinal and Aα ≤ ℵα for all α ∈ S. For each f ∈ F , since f(α) < ℵα for all α ∈ S, by
Fodor’s lemma there exists a stationary T ⊆ S and β < ω1 s.t. f(α) < ℵβ for all α ∈ T . Associate
to f the pair (T, f↾T ); note that f↾T is a bounded function from T to ℵω1 . Since ℵω1 is a strong
limit, it is easy to count that the number of such pairs is ℵω1 . Finally, the map f 7→ (T, f↾T ) is
injective because if f, g ∈ F agree on a stationary set then they are the same.

Proof of Lemma 2.1. Again we may assume every Aα is a cardinal and the set T := {α < ω1 :
α is a limit and Aα ≤ ℵα+1} is stationary. We present two slightly different proofs.

(1) Let D be any ultrafilter on ω1 that extends the club filter and contains T . Clearly if
f, g ∈ F are different then they are still different modulo D, so we may regard F as a subset of the
ultraproduct

∏
αAα/D. Since the ultraproduct (and thus F) is a linear order, it suffices to show
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that for every g ∈ F , the number of f ∈ F s.t. f < g mod D is at most ℵω1 : we can talk about
cofinalities of arbitrary linear orders; if every proper initial segment of F has size at most ℵω1 then
the cofinality of F is at most ℵω1+1, and then F has size at most ℵω1+1.

Now if f < g mod D then f(α) < g(α) on some stationary subset S ⊆ T . For α ∈ S we have
g(α) < ℵα+1, and therefore |g(α)| ≤ ℵα, so by Lemma 2.2 the set of such f ∈ F (for each fixed S)
is at most ℵω1 . This finishes the proof of Lemma 2.1, hence Silver’s theorem.

(2) For any g ∈ F and stationary S ⊆ T , define Fg,S as the set of all f ∈ F s.t. f(α) ≤ g(α) for
all α ∈ S, and let Fg =

⋃
Fg,S where the union is taken over all stationary S ⊆ T . As before we

have |Fg,S | ≤ ℵω1 and thus |Fg| ≤ ℵω1 . Also notice that for any f, g ∈ F , either f ∈ Fg or g ∈ Ff .

Now inductively define a sequence (fξ)ξ as follows: if F \
(⋃

η<ξ Ffη

)
̸= ∅, then let fξ belong to

this set; this sequence is clearly injective. We claim that fℵω1+1 cannot exist; otherwise fξ ∈ Ffℵω1+1

for all ξ < ℵω1+1, and thus |Ffℵω1+1
| ≥ ℵω1+1, a contradiction. Therefore, F =

⋃
ξ<ϑ Ffξ

for some
ϑ ≤ ℵω1+1 and |F| ≤ ℵω1+1.

Silver’s Theorem can be vastly generalized; for example if {α < ω1 : 2ℵα = ℵα+2} is stationary
then 2ℵω1 ≤ ℵω1+2. The Galvin-Hajnal Theorem seems to be the ultimate result in this direction
using elementary methods. It says if ℵα is a strong limit singular cardinal with uncountable cofinality,
then 2ℵα < ℵ(2|α|)+ ; note that this is nontrivial only if α < ℵα, namely α is not a fixed point of the
aleph function.

Let us prove the special case that if ℵω1 is a strong limit then 2ℵω1 < ℵ(2ω1 )+ . Similar to
Silver’s Theorem, it suffices to show that if F ⊆

∏
α<ω1

Aα is an almost disjoint family where
|Aα| < ℵω1 for all α then |F| < ℵ(2ω1 )+ . There exists a function φ : ω1 → ω1 s.t. |Aα| ≤ ℵα+φ(α).
Consider the non-stationary ideal INS on ω1. For functions φ,ψ : ω1 → ω1, define φ < ψ iff
{α < ω1 : φ(α) ≥ ψ(α)} ∈ INS; in other words φ < ψ if ψ is bigger on a club set. Since clubs are
closed under countable intersections, there cannot be infinite decreasing sequence; in other words the
partial order < is well-founded, so we can assign the Galvin-Hajnal rank ∥φ∥ to each φ : ω1 → ω1,
defined recursively by ∥φ∥ = sup{∥ψ∥ + 1 : ψ < φ}. There are 2ω1 many functions φ : ω1 → ω1, so
it’s not hard to see that ∥φ∥ < (2ω1)+ for any φ. It suffices to prove the following:

Lemma 2.3. If φ : ω1 → ω1 is a function and F ⊆
∏
α<ω1

Aα is an almost disjoint family s.t.
|Aα| ≤ ℵα+φ(α) for all α, then |F| ≤ ℵω1+∥φ∥.

This is proven by induction on the Galvin-Hajnal rank. Note that ∥φ∥ = 0 iff φ is zero on a
stationary set, so the base case is exactly Lemma 2.2, which is where Fodor’s lemma and hence
the uncountable cofinality is used. The successor case is similar to the second proof of Lemma
2.1, but a bit more complicated and utilizes an auxiliary rank ∥φ∥S , which we now define. For
each stationary set S ⊆ ω1, define the partial order <S on functions φ : ω1 → ω1 by φ <S ψ iff
{α ∈ S : φ(α) ≥ ψ(α)} ∈ INS. Intuitively, we restrict the non-stationary ideal to S, and anything
happening outside of S is ignored. The order <S is again well-founded, which gives rise to a rank
∥φ∥S = sup{∥ψ∥S + 1 : ψ <S φ}. The basic Galvin-Hajnal rank is the case S = ω1. We list some
properties of these ranks that will be useful. Both S and T range over stationary subsets of ω1. We
adopt the convention that 0 is not a limit ordinal.

1. If S ⊆ T then φ <T ψ implies φ <S ψ. Put another way, <S is finer than <T . It can then be
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proved by induction that ∥φ∥T ≤ ∥φ∥S . Also φ <S∪T ψ iff φ <S ψ and φ <T ψ.

2. By induction on ∥φ∥S∪T we show that ∥φ∥S∪T = min{∥φ∥S , ∥φ∥T }. Say ∥φ∥S ≤ ∥φ∥T . To
show ∥φ∥S∪T = ∥φ∥S , consider any ψ <S φ. There exists ψ′ <T φ s.t. ∥ψ∥S ≤ ∥ψ′∥T . Define
ψ′′ by ψ′′ = ψ on S \ T , ψ′′ = ψ′ on T \ S and ψ′′ = max{ψ,ψ′} on S ∩ T ; the values outside
of S ∪ T can be arbitrary. Then ψ′′ <S∪T φ, ∥ψ′′∥S ≥ ∥ψ∥S and ∥ψ′′∥T ≥ ∥ψ′∥T ≥ ∥ψ∥S , so
by induction hypothesis ∥ψ′′∥S∪T ≥ ∥ψ∥S . Since this holds for arbitrary ψ <S φ, we have
∥φ∥S∪T ≥ ∥φ∥S .

3. If {α ∈ S : φ(α) is not a limit ordinal} ∈ INS (namely if φ(α) is a limit ordinal almost
everywhere on S), then ∥φ∥S is a limit ordinal, since if ψ <S φ then ψ + 1 <S φ, where ψ + 1
means ψ plus 1 pointwise. Similarly, if {α ∈ S : φ(α) is not a successor ordinal} ∈ INS, then
∥φ∥S = ∥φ′∥S + 1, where φ′ is the function defined by φ(α) = φ′(α) + 1 if φ(α) is a successor
and arbitrarily elsewhere. In particular ∥φ∥S is a successor ordinal.

4. Let S = {α < ω1 : φ(α) is a limit ordinal} and T = {α < ω1 : φ(α) is a successor ordinal}. It
follows from 2 and 3 that if ∥φ∥ is a limit then ∥φ∥ = ∥φ∥S , since otherwise ∥φ∥ = ∥φ∥T is a
successor. Similarly, if ∥φ∥ is a successor then ∥φ∥ = ∥φ∥T .

5. By induction, if φ is bounded by some β < ω1 on a stationary set then ∥φ∥ ≤ β. Thus
∥φ∥ = β iff φ(α) = β for stationarily many α and φ(α) > β almost everywhere else.

Proof of Lemma 2.3. WLOG each Aα is a cardinal at most ℵα+φ(α). We prove the lemma by
induction on ∥φ∥. The base case ∥φ∥ = 0 is Lemma 2.2.

(i) ∥φ∥ is a limit ordinal.

Then S := {α < ω1 : φ(α) is a limit ordinal} is stationary. For every f ∈ F and α ∈ S
we have f(α) < ℵα+φ(α), so there exists a ψ s.t. ψ(α) ≤ φ(α) for all α < ω1, ψ(α) < φ(α)
for all α ∈ S (so ψ <S φ), and f ∈

∏
α<ω1

ℵα+ψ(α). By property 4 we have ∥φ∥ = ∥φ∥S , so
∥ψ∥ ≤ ∥ψ∥S < ∥φ∥S = ∥φ∥. In particular ∥ψ∥ < ∥φ∥, and we can apply induction hypothesis:
F ∩

∏
α<ω1

ℵα+ψ(α) has size at most ℵα+∥ψ∥ < ℵα+∥φ∥. Since there are just 2ω1 < ℵω1 many
possibilities for ψ, we have |F| ≤ ℵα+∥φ∥.

(ii) ∥φ∥ is a successor ordinal.

Then T = {α < ω1 : φ(α) is a successor ordinal} is stationary and ∥φ∥ = ∥φ∥T . For each g ∈ F
and stationary S ⊆ T such that ∥φ∥S = ∥φ∥, let Fg,S = {f ∈ F : ∀α ∈ S f(α) ≤ g(α)} and
Fg =

⋃
Fg,S where the union is taken over all stationary S ⊆ T satisfying ∥φ∥S = ∥φ∥.

For each S as above, there is a function ψ s.t. ψ(α) ≤ φ(α) for all α < ω1, ψ(α) < φ(α) for
all α ∈ S (so ψ <S φ) and |g(α)| ≤ ℵα+ψ(α) for all α < ω1. Since ∥ψ∥ ≤ ∥ψ∥S < ∥φ∥S = ∥φ∥, the
induction hypothesis gives |Fg,S | ≤ ℵω1+∥ψ∥. Since there are only 2ω1 many possibilities for ψ, and
ℵω1+∥φ∥ is a successor cardinal hence regular, we have |Fg| < ℵω1+∥φ∥.

Next we observe that for any f, g ∈ F , if we let S1 = {α ∈ T : f(α) ≤ g(α)} and S2 = {α ∈
T : f(α) ≥ g(α)}, then by property 2, either ∥φ∥S1 = ∥φ∥ or ∥φ∥S2 = ∥φ∥. Consequently, either
f ∈ Fg or g ∈ Ff .

Finally, inductively define a sequence (fξ)ξ as follows: if F \
(⋃

η<ξ Ffη

)
̸= ∅, then let fξ

belong to this set; this sequence is clearly injective. We claim that fℵω1+∥φ∥ cannot exist; otherwise
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fξ ∈ Ffℵω1+∥φ∥
for all ξ < ℵω1+∥φ∥, and thus |Ffℵω1+∥φ∥

| ≥ ℵω1+∥φ∥, contradicting the fact that
|Fg| < ℵω1+∥φ∥ for all g. Therefore, F =

⋃
ξ<ϑ Ffξ

for some ϑ ≤ ℵω1+∥φ∥ and |F| ≤ ℵω1+∥φ∥.

A natural question is whether there is an analogue of Galvin-Hajnal Theorem for singular
cardinals of countable cofinality, say ℵω. This led Shelah to his celebrated pcf theory.

3 Basic notions of pcf theory

Shelah’s pcf theory is the theory of possible cofinalities of ultraproducts: every linear order has
a well-defined cofinality, and given a set A of regular cardinals, we consider the set pcf(A) of all
possible cofinalities of the ultraproduct

∏
A/D for some ultrafilter D on A. It turns out this is

deeply related to cardinal arithmetic. One of the most famous results in pcf theory is:

(∗) if ℵω is a strong limit then 2ℵω < ℵω4 .

This formula used to be displayed at the top of Shelah’s website (before it was renovated). It is
unknown whether the mysterious number 4 is optimal, although it is known that 2ℵω = ℵα+1 is
consistent relatively to large cardinals for any countable ordinal α.

We remark that what Shelah actually proved is the following ZFC result:

cf([ℵω]ℵ0 ,⊆) = max pcf(A) < ℵω4 ,

where A = {ℵn : n ∈ ω}, and cf([ℵω]ℵ0 ,⊆) means the smallest cardinality of a cofinal subset of
the partial order ([ℵω]ℵ0 ,⊆). It is easy to see that 2ℵ0 < ℵω implies cf([ℵω]ℵ0 ,⊆) = |[ℵω]ℵ0 | = ℵℵ0

ω ,
so this is a more refined version of (∗). The quantity cf([ℵω]ℵ0 ,⊆) or equivalently max pcf(A) should
be viewed as more fundamental than 2ℵω since it is much more robust; for example, it is not difficult
to show that cf([ℵω]ℵ0 ,⊆) cannot be changed by ccc forcing. However, for simplicity we shall follow
Jech and just prove (∗).

We first introduce some basic notions. If A is any nonempty set, an ideal on A is a subset
I ⊆ P(A) such that (i) ∅ ∈ I, (ii) if X,Y ∈ I then X ∪Y ∈ I, (iii) if X ∈ I and Y ⊆ X then Y ∈ I.
If A /∈ I then we say I is a proper ideal. If I is an ideal then {A \X : X ∈ I} is a filter. We think
of a set X ∈ I as “small”, “negligible” or “measure zero”, while a set in the dual filter is “large” or
“measure one”; I+ denotes P(A) \ I, and we call it the collection of I-positive sets. Any subset of
P(A) generates a (possibly improper) ideal. If X is an I-positive set, we denote the (proper) ideal
generated by I ∪ {A \X} as I ↾ X, for which X is still a positive set.

If I is an ideal on A and f, g are ordinal functions on A, i.e., dom(f) = dom(g) = A and
f(a), g(a) ∈ Ord for all a ∈ A, then we define

f <I g ⇔ {a ∈ A : f(a) ≥ g(a)} ∈ I

f ≤I g ⇔ {a ∈ A : f(a) > g(a)} ∈ I

f =I g ⇔ {a ∈ A : f(a) ̸= g(a)} ∈ I

<I is a strict partial order as long as I is proper, ≤I is a pre-order that is finer than <I , and =I

is an equivalence relation. There are some simple relations between these, for example if f <I g
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and g ≤I h then f <I h. Be careful that f <I g is not the same as f ≤I g ∧ ¬(f =I g); say I is the
ideal consisting of all finite subsets of A, then f <I g means f(a) < g(a) on a cofinite set, while
f ≤I g ∧ ¬(f =I g) means f(a) < g(a) on an infinite set. If F is a filter on A then <F means <I
where I is the dual ideal. We are most interested in the case A = {ℵn : n ∈ ω} and I some proper
ideal that at least contains all the finite sets.

By a directed relation, we mean a binary relation (P, E) that satisfies:

(i) It is transitive, namely pEq ∧ qEr → pEr.

(ii) For any p, q ∈ P there is r ∈ P s.t. pEr and qEr.

(iii) There is no maximal element, that is a p such that qEp for all q ∈ P. It follows that every
element has a proper successor, meaning ∀p ∈ P∃q ∈ P pEq ∧ ¬(qEp), because there exists q such
that ¬qEp, and by (ii) there exists a q′ such that qEq′ and pEq′, and thus ¬q′Ep.

We don’t assume anything about reflexivity, in order to treat pre-order and strict partial
order simultaneously. A subset X ⊆ P is unbounded if ∀p ∈ P∃q ∈ X¬(qEp), and is cofinal or
dominating if ∀p ∈ P∃q ∈ X(pEq). A cofinal set is unbounded because of (ii) above. We define
the bounding number b(P, E) = min{|X| : X ⊆ P is unbounded} and the dominating number
d(P, E) = min{|X| : X ⊆ P is dominating}; the latter is more often denoted cf(P, E). When applied
to (ωω, <∗), where <∗ denotes eventual dominance, this gives the classical cardinal characteristics b
and d on continuum. Call a subset X ⊆ P linear if the induced relation (X,E) satisfies that for
any different p, q ∈ X, exactly one of pEq and qEp holds. Below are some simple observations; all
relations are assumed to be directed.

1. Always b(P, E) ≤ d(P, E). Equality holds iff (P, E) has a linear cofinal subset; in this case we
sometimes denote both cardinal as tcf(P, E), the “true cofinality”. An example of a directed
poset without true cofinality is ω × ω1 with the product order.

2. If X is a cofinal subset of P, then d(P, E) = d(X,E). If (P, E′) is finer than (P, E), namely
pEq → pE′q, then b(P, E) ≤ b(P, E′) ≤ d(P, E′) ≤ d(P, E). These are special cases of Tukey
reduction. In particular, if (P, E) has true cofinality then all four cardinals are equal, so
cf(P, E) = cf(P, E′) for any directed relation E′ that is finer than E; we will use this all the
time.

3. Suppose I is a proper ideal on A and F is a set of ordinal functions that is directed in <I ,
namely for any f, g ∈ F there exists h ∈ F such that f <I h and g <I h; in particular
for any f ∈ F there exists g ∈ F such that f <I g. Then it’s not difficult to check that a
set X ⊆ F is unbounded/cofinal in (F,<I) iff it is unbounded/cofinal in (F,≤I), so their
bounding/dominating numbers are the same. In practice F is usually a product of limit
ordinals or a <I -increasing sequence, and hence directed, so there is no ambiguity when we
say something like “I is λ-directed.”

4. The bounding number is always regular, while the dominating number may not be, but it
is regular if P is a linear order, or more generally when it has true cofinality. Then it can
be shown that (P, E) has a well-ordered cofinal subset, say by defining a cofinal sequence
inductively, and that cf(P, E) is equal to the cofinality of that well-order, which must be
regular.
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For a cardinal λ, we say that (P, E) is λ-directed if it is directed and b(P, E) ≥ λ; by definition,
this means that for any X ⊆ P with |X| < λ, there exists p ∈ P such that qEp for all q ∈ X. If λ is
singular and (P, E) is λ-directed, then it is actually λ+-directed.

Now we can define the central notion in pcf theory. Let A be a nonempty set of infinite
regular cardinals. Denote by

∏
a∈A a or

∏
A the set of all functions such that dom(f) = A and

∀a ∈ A f(a) ∈ a; be careful that if A = {ℵn : n ∈ ω} then f is a function on A rather than ω,
although we can certainly translate between them. Let

∏
a∈A a/D or

∏
A/D be the ultraproduct by

D, consisting of equivalence classes of functions; since each a ∈ A is a regular cardinal, in particular
a linear order, so is the ultraproduct, and we can talk about its cofinality. It is not hard to see that
cf(

∏
a∈A a/D) = cf(

∏
a∈A a,<D), and we use them interchangeably.

Definition 3.1. pcf(A) := {cf(
∏
a∈A a/D) : D is an ultrafilter on A}.

We list several properties of the pcf operation, some of them to be proven later.

1. pcf(A) ⊇ A because we allow D to be principal, and if λ ∈ pcf(A) then λ ≥ minA, because if
κ < minA then the pointwise supremum of κ many functions in

∏
A is again in

∏
A, so in

any ultraproduct, any κ many functions have an upper bound.

2. If A ⊆ B then pcf(A) ⊆ pcf(B). This is because there is a natural bijection between ultrafilters
on A and ultrafilters on B that are concentrated on (i.e. contain) A.

3. pcf(A ∪B) = pcf(A) ∪ pcf(B). This is because an ultrafilter on A ∪B is either concentrated
on A or on B.

4. If |pcf(A)| < minA then pcf(pcf(A)) = pcf(A). This will be proven later, and is basically
because an ultraproduct of ultraproducts is again an ultraproduct. Note that a trivial bound for
|pcf(A)| is 22|A| . In our main application A will be {ℵn : n ∈ ω}, and will satisfy 22|A|

< minA
provided ℵω is a strong limit and we delete the first several points from A, which has minimal
effect on pcf(A).

5. Call a set A of regular cardinals an interval if whenever a, b ∈ A and c is some regular cardinal
s.t. a < c < b, then c ∈ A. If A is an interval of regular cardinals and 2|A| < minA, then
pcf(A) is also an interval.

A set A of regular cardinals is called progressive if |A| < minA. For example, if ℵα is a singular
cardinal and α < ℵα (i.e., ℵα is not an alpeh fixed point) then [|α|+,ℵα) ∩ Reg is progressive, where
Reg is the class of regular cardinals. This is the standard assumption used in many texts on pcf
theory, but it makes proofs harder, for example we only get a weak version of property 4. Thus we
follow Jech and constantly assume 2|A| < minA or even stronger conditions.

Properties 1-4 can be interpreted topologically; this is not needed in the proofs but may
provide some intuition. First notice that if |pcf(A)| < minA then for any X ⊆ pcf(A), we
have pcf(X) ⊆ pcf(pcf(A)) = pcf(A), and moreover |pcf(X)| ≤ |pcf(A)| < minA ≤ minX, so
pcf(pcf(X)) = pcf(X). If we artificially let pcf(∅) = ∅, then pcf is an operation on the power set
of A := pcf(A). The above properties tells us this is a closure operator, namely there is a topology
on A whose closed sets are exactly those X s.t. pcf(X) = X, and the pcf operation is exactly
topological closure.
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The significance of 5 is that if pcf(A) is an interval, then a bound on |pcf(A)| gives a bound
on sup pcf(A). We can now outline the first application of pcf theory: if ℵω is a strong limit then
2ℵω < ℵ(2ℵ0 )+ ; this is exactly the analogue of Galvin-Hajnal for countable cofinality. The proof will
proceed as follows. Let A = {ℵn : n ∈ ω}; a few facts not mentioned above are that we have a
nontrivial bound |pcf(A)| ≤ 2|A|, pcf(A) actually has a maximal element, and that this element is
equal to 2ℵω . Since pcf(A) is an interval starting at ℵ0 and has at most 2ℵ0 elements, if its maximal
element is ℵα then we must have α < (2ℵ0)+.

A better bound on pcf(A) will clearly give us a better bound on 2ℵω . Using the existence of
so-called transitive generators, a pretty technical theorem even within pcf theory, we will show that
|pcf(A)| < ω4, and thus 2ℵω < ℵω4 . This is only tighter than the first bound if 2ℵ0 ≥ ω4, which may
not seem super impressive, but keep in mind that using the full strength and technicality of pcf
theory one can prove cf([ℵω]ℵ0 ,⊆) = max pcf(A) < ℵω4 , which gives a reasonable bound even in
case 2ℵ0 is weakly inaccessible.

4 Ultraproducts, exact upper bounds

We first prove property 4, that if |pcf(A)| < minA then pcf(pcf(A)) = pcf(A). It essentially
follows from general facts about ultraproducts of structures.

Proposition 4.1. Suppose we are given the following data: (Mi : i ∈ I) are structures in the same
language; Dj is an ultrafilter on I for each j ∈ J ; denote the ultraproduct

∏
iMi/Dj by Nj; finally E

is an ultrafilter on J . Then there exists an ultrafilter U on I × J such that
∏
j Nj/E ≃

∏
i,jMi/U .∏

i,jMi is the set of functions f on I × J s.t. f(i, j) ∈ Mi. So an iterated ultraproduct can
actually be rewritten as a single ultraproduct of the same set of models. A variant of this proposition
is used in the study of measurable cardinals.

Proof. For any Z ⊆ I × J and j ∈ J , define Zj = {i ∈ I : (i, j) ∈ Z}. Let

U = {Z ⊆ I × J : {j ∈ J : Zj ∈ Dj} ∈ E}.

It is not hard to verify that U is an ultrafilter. If we picture I × J as a rectangle (J being the
length) then a set Z is large iff E-almost all vertical sections are large w.r.t. the measure Dj on
that section.

For any f ∈
∏
i,jMi, define fj(i) = f(i, j), so fj ∈

∏
iMi and [fj ]Dj ∈ Nj . Consider the map

π :
∏
i,jMi →

∏
j Nj , f 7→ ([fj ]Dj )j . The definition of U readily implies that f = g mod U iff

π(f) = π(g) mod E, and thus π induces an injection from
∏
i,jMi/U to

∏
j Nj/E, denoted π̄. Since

π is easily seen to be surjective, so is π̄. Elementarity is similar, for example
∏
i,jMi/U |= φ([f ]U )

iff {(i, j) ∈ I × J : Mi |= φ(f(i, j))} ∈ U iff {j ∈ J : {i ∈ I : Mi |= φ(fj(i))} ∈ Dj} ∈ E iff
{j ∈ J : Nj |= φ([fj ]Dj )} ∈ E iff

∏
j Nj/E |= φ(π(f)).

If p : I → J is a map and D is an ultrafilter on I, we define its push-forward to be p∗(D) =
{Y ⊆ J : p−1(Y ) ∈ D}, which is an ultrafilter, and is non-principal if the preimage of every j ∈ J is
D-small. Push-forward actually makes sense for arbitrary filters, or indeed any “type 2” objects
such as measures, functionals, etc.
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Proposition 4.2. Suppose p : I → J is a map, D is an ultrafilter on I, and (Mj : j ∈ J) are
structures in the same language. Then

∏
jMj/p∗(D) elementarily embeds into

∏
iMp(i)/D.

Proof. The map τ :
∏
jMj →

∏
iMp(i), f 7→ f ◦ p induces an elementary embedding. For example∏

jMj/p∗(D) |= φ([f ]) iff {j ∈ J : Mj |= φ(f(j))} ∈ p∗(D) iff {i ∈ I : Mp(i) |= φ(f(p(i)))} ∈ D iff∏
iMp(i)/D |= φ([f ◦ p]).

Corollary 4.3. If A is a set of regular cardinals and |pcf(A)| < minA, then pcf(pcf(A)) = pcf(A).

Proof. Let λ ∈ pcf(pcf(A)), so there exist an ultrafilter E on pcf(A) such that λ = cf(
∏
ν∈pcf(A) ν/E).

For every ν ∈ pcf(A) there is an ultrafilter Dν on A such that ν = cf(
∏
a∈A a/Dν). For brevity, any

subscript a ranges over a ∈ A and ν ranges over ν ∈ pcf(A).

Denote Nν =
∏
a a/Dν . Since cf(Nν) = ν, it is not hard to see that

∏
ν ν/E cofinally embeds into∏

ν Nν/E, and thus λ = cf(
∏
ν Nν/E). By Proposition 4.1 there is an ultrafilter U on A× pcf(A)

such that
∏
a,ν a/U ≃

∏
ν Nν/E, so λ = cf(

∏
a,ν a/U).

Consider the map p : A × pcf(A) → A and let V = p∗(U). By Proposition 4.2 the map
τ :

∏
a a →

∏
a,ν a, f 7→ f ◦ p induces an elementary embedding τ̄ :

∏
a a/V →

∏
a,ν a/U . We

claim that this embedding is cofinal. If f ∈
∏
a a, then τ(f) is simply pcf(A) many copies of

f . If g ∈
∏
a,ν a, then since |pcf(A)| < minA and A consists of regular cardinals, if we define

f(a) = supν g(a, ν) then f ∈
∏
a a; clearly τ(f) ≥ g. Thus τ̄ is cofinal, and λ = cf(

∏
a a/V ).

Our next goal is to show property 5, that the pcf of an interval is an interval. For that we need
to first study exact upper bounds of ordinal functions. We will show that, under the simplifying
assumption that 2|A| < minA, eub almost always exists. This has another important corollary: the
existence of pcf generators, which gives a nontrivial bound |pcf(A)| ≤ 2|A|. Then once we connect
max pcf(A) to 2ℵω , we will be able to give the first application of pcf theory to cardinal arithmetic.

Suppose I is a proper ideal on A and F is a set of ordinal functions on A; as mentioned before F
is almost always directed in <I . We call g ∈ OrdA an upper bound of F (w.r.t. I) if ∀f ∈ F f ≤I g.
Again, for directed F it doesn’t matter whether we use ≤I or <I in the definition. We call g a
least upper bound if it is an upper bound, and if h is also an upper bound then g ≤I h; this is the
same as saying that g is a minimal upper bound, namely if h is an upper bound and h ≤I g then
h =I g, because (OrdA,≤I) is a lattice (for general poset lub and mub are different). Lub is clearly
unique up to =I if it exists. We call g an exact upper bound of F if F is cofinal in (

∏
a g(a), <I), or

equivalently (for directed F ) if h <I g then there exists f ∈ F s.t. h <I f . For example, if g(a) is a
limit ordinal for every a then g is an eub of F =

∏
a g(a). Also if F is directed in <I and g is an eub,

then g(a) is a limit ordinal for I-almost all a, so WLOG we may assume g(a) is a limit everywhere.

Let A = ω, I be the ideal of finite sets and fn be the constant function on ω with value n.
Then ⟨fn : n < ω⟩ doesn’t even have a lub, as is easily checked (we are confusing ⟨fn : n < ω⟩ with
{fn : n < ω} as in standard practice). However, it turns out any <I -increasing sequence that is
sufficiently long does have an eub. The proof uses elementary sub-models, as is common in pcf
theory. The size of the model is often chosen to be something between 2|A| and minA.

Theorem 4.4. Suppose A is a set, I is a proper ideal, λ > 2|A| is regular and F = ⟨fξ : ξ < λ⟩ is a
<I-increasing sequence of ordinal functions on A, namely if ξ < η then fξ <I fη. Then F has an
exact upper bound.
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Proof. Let M be an elementary sub-model of Hθ for some large enough θ, such that |M | = 2|A|,
|A|M ⊆ M , and I, F ∈ M ; it follows that A ⊆ M . For each ξ < λ define an ordinal function gξ on
A by

gξ(a) = the least β ∈ M s.t. β ≥ fξ(a).

First note that such a β exists (even though fξ may not be in M), because supξ<λ fξ(a) is
definable for each a and thus in M by elementarity. We have gξ ∈ |A|M , and hence gξ ∈ M since M
is closed under sequences of length |A|. Recall |M | = 2|A| < λ, so there exists a g ∈ M s.t. gξ = g
for unboundedly many ξ. Since g ≥ fξ pointwise for unboundedly many ξ and F = ⟨fξ : ξ < λ⟩ is
<I -increasing, g is an upper bound of F .

Next we show g is a lub; by elementarity it is enough to show this in M . Suppose h ∈ M and h
is an upper bound of F ; choose any ξ s.t. g = gξ; then by definition gξ ≤I h, so g ≤I h.

Finally we show that under the assumptions in the theorem, an lub g is automatically an eub.
Suppose otherwise, then there exists h <I g s.t. h ̸<I fξ for any ξ < λ, so there exists Xξ ∈ I+ s.t.
fξ(a) ≤ h(a) for a ∈ Xξ. Since λ > 2|A| and is regular, there exists X ∈ I+ s.t. X = Xξ for an
unbounded set Z of ξ, so fξ(a) ≤ h(a) for all a ∈ X and ξ ∈ Z. It follows that if we define g′ by
g′(a) = h(a) for a ∈ X and g′(a) = g(a) elsewhere, then g′ is an upper bound of ⟨fξ : ξ ∈ Z⟩, and
hence of F , contradicting that g is an lub.

Let’s show the usefulness of eub by proving a weak version of property 5 of pcf operation, which
suffices for our application to ℵω.

Corollary 4.5. If A is an interval of regular cardinals and (2|A|)+ = minA, then pcf(A) is an
interval.

Proof. Suppose µ ∈ pcf(A) and minA ≤ λ < µ is regular; we shall show that λ ∈ pcf(A). Let
D be an ultrafilter on A and ⟨fξ : ξ < µ⟩ be <D-increasing and cofinal in

∏
A. By the theorem

⟨fξ : ξ < λ⟩ has an eub g, which we may assume satisfies g(a) < a, because fλ is an upper bound and
fλ ∈

∏
A. Therefore, cf(

∏
a∈A g(a), <D) = λ, which is the same as saying cf(

∏
a∈A g(a)/D) = λ;

clearly we also have cf(
∏
a∈A cf(g(a))/D) = λ. Note that {a ∈ A : cf(g(a)) ≥ (2|A|)+} ∈ D, since

otherwise
∏
a∈A cf(g(a))/D has at most (2|A|)|A| = 2|A| many elements. Since also cf(g(a)) < a and

A is an interval, we have {a ∈ A : cf(g(a)) ∈ A} ∈ D.

Consider the map p : A → A that sends a to cf(g(a)) in case cf(g(a)) ∈ A, and to arbitrary
value otherwise. Consider the embedding

∏
a∈A a/p∗(D) →

∏
a∈A p(a)/D from Proposition 4.2; it

is induced by f 7→ f ◦ p. We claim that this embedding is cofinal, and thus cf(
∏
a∈A a/p∗(D)) =

cf(
∏
a∈A p(a)/D) = cf(

∏
a∈A cf(g(a))/D) = λ. For f ∈

∏
a∈A p(a) consider f ′ defined by f ′(a) =

sup{f(b) : p(b) = a} < a for each a; because |{f(b) : p(b) = a}| ≤ |A| < minA and each a ∈ A is
regular, we have f ′(a) ∈ a, in other words f ′ ∈

∏
a∈A a, and f ≤ f ′ ◦ p pointwise by definition.

Consequently, if 2ℵ0 < ℵω then pcf{ℵn : n < ω} is an interval: if we let ℵk = 2ℵ0 then
pcf{ℵn : k + 1 ≤ n < ω} is an interval, which easily implies pcf{ℵn : n < ω} is an interval. But
to show that, e.g., pcf{ℵω+n : 1 ≤ n < ω} is an interval using the above result, we need the
ad hoc assumption that 2ℵ0 = ℵω+k for some k. Later we will see that actually 2|A| < minA
suffices; the key is to show that if ⟨fξ : ξ < µ⟩ has many good points, then its eub g satisfies
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cf(g(a)) ≥ minA for most a. Note that we cannot expect any ⟨fξ : ξ < µ⟩ to work. For instance,
suppose A = {ℵω+n : 1 ≤ n < ω} and B = {ℵn : 1 ≤ n < ω}. Any sequence ⟨fξ : ξ < µ⟩ ⊆

∏
B can

be regarded as a sequence in
∏
A, but its eub g cannot satisfy cf(g(a)) ≥ minA = ℵω+1.

5 Pcf generators

If A = {ℵn : n ∈ ω}, then by the previous section we know that pcf(A) is an interval, which
means it must contain ℵω+1. Because for any non-principal ultrafilter D on A, the partial order
(
∏
A,<D) is ℵω+1-directed. Indeed, suppose X ⊆

∏
A and |X| = ℵk for some k, then we can

define an upper bound g by g(ℵn) = 0 for n ≤ k and g(ℵn) = sup{f(ℵn) : f ∈ X} for n > k. Thus
cf(

∏
A,<D) ≥ ℵk for every k, which means cf(

∏
A,<D) ≥ ℵω+1.

It turns out we can do better: there is a set B ⊆ A such that (
∏
B,<I) already has true

cofinality ℵω+1, where I is the ideal of finite subsets of B; it follows that cf(
∏
A,<D) = ℵω+1 for

any non-principal ultrafilter D on A that contains B. In fact there is such a B that is maximal
modulo finite sets, and we call this canonical object the pcf generator at ℵω+1.

This suggests that we should study not only (
∏
A,<D) for ultrafilters D, but also (

∏
A,<I) for

general ideals, for example when does it have true cofinality. Recall that if I is a proper ideal on A
and X ∈ I+, then I ↾ X is the (proper) ideal generated by I ∪ {A \X}. Also if F ⊆

∏
A is cofinal

in <I , then it remains so in <I↾X , or indeed in any partial order finer than <I , such as <D where
D is an ultrafilter whose dual ideal contains I. Similarly, if F is bounded in <I then the same holds
for <I↾X . It is not hard to see that (

∏
A,<I↾X) and (

∏
X,<IX

) are essentially the same, where
IX = I ∩ P(X); in particular they have the same bounding and dominating number. We prefer to
write (

∏
A,<I↾X) so as to stick with ideals on A and avoid ambiguity.

Let I be the ideal of finite sets on A = {ℵn : n ∈ ω}. As mentioned above, there exists a B ⊆ A
that is maximal modulo I such that tcf(B,<IB

) = ℵω+1, or equivalently tcf(A,<I↾B) = ℵω+1. There
are two cases. First, B could be (modulo I) all of A, in which case I ↾ B = I and ℵω+1 = max pcf(A).
If B is not everything, it turns out if we consider the ideal J generated by I ∪ {B}, then (A,<J) is
ℵω+2-directed, and that there exists a C ⊆ A such that tcf(A,<J↾C) = ℵω+2, and moreover there is
such a C maximal modulo J . This analysis can be continued until the point where we reach the
maximal element of pcf(A), and it gives us a fairly good picture of what (A,<I) for an arbitrary
ideal I might look like.

In the rest of this section, let A be a set of infinite regular cardinals such that 2|A| < minA; we
don’t need A or pcf(A) to be an interval.

Lemma 5.1 (Scale trichotomy). If F = ⟨fξ : ξ < λ⟩ ⊆
∏
A is <I-increasing and λ > 2|A|, then

exactly one of the following holds: (i) F is cofinal in (
∏
A,<I); (ii) F is bounded in (

∏
A,<I);

(iii) there exist disjoint X,Y ∈ I+ s.t. X ∪ Y = A, F is cofinal in (
∏
A,<I↾X) and F is bounded

in (
∏
A,<I↾Y ).

Proof. F has an eub g, and we may assume g(a) ≤ a for all a ∈ A. Let X = {a ∈ A : g(a) = a}
and Y = {a ∈ A : g(a) < a}. Since F is cofinal in (

∏
a∈A g(a), <I), it is cofinal in (

∏
A,<I↾X); on

the other hand g′ is an upper bound of F in (
∏
A,<I↾Y ) where g′(a) = g(a) for a ∈ Y and g(a) = 0

elsewhere.
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We say that I has a λ-scale if tcf(
∏
A,<I) = λ, namely there exists a sequence ⟨fξ : ξ < λ⟩ ⊆

∏
A

that is <I -increasing and cofinal in
∏
A. We say I has a λ-scale on X ∈ I+ if I ↾ X has a λ-scale.

A proper ideal I is called λ-directed if (
∏
A,<I) is λ-directed, which by definition means

b(
∏
A,<I) ≥ λ, namely any X ⊆

∏
A s.t. |X| < λ has an upper bound in (

∏
A,<I). For singular

λ, if I is λ-directed then it is λ+-directed.

Lemma 5.2 (Ideal trichotomy). If λ > 2|A| is regular and the proper ideal I is λ-directed, then
exactly one of the following holds: (i) I has a λ-scale; (ii) I is λ+-directed; (iii) there exist disjoint
X,Y ∈ I+ s.t. X ∪ Y = A, I ↾ X has a λ-scale and I ↾ Y is λ+-directed.

Proof. Suppose I doesn’t have a λ-scale and isn’t λ+-directed, so there is an unbounded subset
of (

∏
A,<I) of cardinality λ. Using the fact that I is λ-directed, we can construct a sequence

F = ⟨fξ : ξ < λ⟩ ⊆
∏
A that is increasing in <I and unbounded in (

∏
A,<I); it cannot be cofinal

since I doesn’t have λ-scale. By the previous lemma there exist disjoint X,Y ∈ I+ s.t. F is cofinal
in (

∏
A,<I↾X), in other words I has a λ-scale on X, and also F is bounded in (

∏
A,<I↾Y ). The

fact that a particular F is bounded doesn’t mean I ↾ Y must be λ+-directed, so we need to work a
bit harder.

Let Z be the collection of all Z ∈ I+ for which I has a λ-scale on Z, and for each such Z
let FZ be a <I↾Z-increasing and cofinal sequence. Since |Z| ≤ |P(A)| < λ and |FZ | = λ for each
Z, we have |

⋃
Z∈Z FZ | = λ. Since I is λ-directed, we can construct an <I -increasing sequence

F = ⟨fξ : ξ < λ⟩ ⊆
∏
A s.t. for any Z ∈ Z and any f ∈ FZ , there exists ξ s.t. f <I fξ. By

construction F is a scale in (
∏
A,<I↾Z) for every Z ∈ Z; in particular F is unbounded in <I

(otherwise it would be bounded in <I↾Z). Let X,Y ∈ I+ be as in the previous paragraph. We claim
that I ↾ Y is λ+-directed. Otherwise, we repeat the argument to find Z ∈ (I ↾ Y )+ s.t. I ↾ Y has a
λ-scale on Z, equivalently I has a λ-scale on Z ∩ Y ∈ I+; so FZ∩Y is defined, and by definition F
should be a scale in (

∏
A,<I↾(Z∩Y )), contradicting that F is bounded in (

∏
A,<I↾Y ).

For any infinite cardinal λ, let Jλ be the (possibly improper) ideal of all sets X ⊆ A s.t.
∀ν ∈ pcf(X) ν < λ. Put another way (because we prefer ideals/filters on A), X ∈ Jλ iff for
any ultrafilter D on A, if X ∈ D then cf(

∏
A/D) = cf(

∏
A,<D) < λ. Recall that we defined

pcf(∅) = ∅, so always ∅ ∈ Jλ. Clearly if λ is a limit cardinal then Jλ =
⋃
ν<λ Jν .

Theorem 5.3 (Fundamental theorem of pcf theory). If Jλ is proper then it is λ-directed. If
λ ∈ pcf(A) then Jλ ⊊ Jλ+, and Jλ+ is generated by a single set Bλ over Jλ.

Proof. First observe that if I has a λ-scale or is λ-directed then so is I ↾ X for any X ∈ I+, or
indeed any proper ideal I ′ ⊇ I. By definition, if D is an ultrafitler on A s.t. D ∩ Jλ ̸= ∅, then
cf(

∏
A/D) = cf(

∏
A,<D) < λ; we will frequently use the contrapositive, namely if cf(

∏
A,<D) ≥ λ

then D ∩ Jλ = ∅, or equivalently D extends the dual filter of Jλ.

We prove the theorem by induction on λ. If λ ≤ minA then Jλ = {∅}, which is trivially (minA)-
directed. Also if λ is a limit cardinal and Jν is a proper ideal for all ν < λ, then Jλ =

⋃
ν<λ Jν

is proper because it doesn’t contain A, and it is ν-directed for any ν < λ, which is the same as
λ-directed. If λ is singular then Jλ+ = Jλ and is λ+-directed.
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Now suppose λ ≥ minA > 2|A| is regular and Jλ is λ-directed. By the ideal trichotomy, exactly
one of the following happens: (i) Jλ has a λ-scale, (ii) Jλ is λ+-directed, (iii) there exist disjoint
Jλ-positive sets X,Y s.t. A = X ∪ Y , Jλ ↾ X has a λ-scale and Jλ ↾ Y is λ+-directed.

In case (i) clearly λ ∈ pcf(A). In fact λ = max pcf(A) because if cf(
∏
A,<D) ≥ λ then D must

extend the dual of Jλ, so D has a λ-scale. Thus Jλ+ = A, and we can let Bλ = A.

In case (ii), λ /∈ pcf(A), since if cf(
∏
A,<D) ≥ λ then D has to extend the dual of Jλ, so

(
∏
A,<D) is also λ+-directed and cf(

∏
A,<D) ≥ λ+. Therefore Jλ+ = Jλ is λ+-directed.

In case (iii), we have X ∈ Jλ+ because if D ∋ X and cf(
∏
A,<D) ≥ λ then D must extend the

dual of Jλ ↾ X, so D has a λ-scale. Next we show X generates Jλ+ over Jλ. If D doesn’t contain X,
then either it intersects Jλ, in which case cf(

∏
A,<D) < λ, or it extends the dual of Jλ ↾ Y , and

thus (
∏
A,<D) is λ+-directed. Therefore λ /∈ pcf(A \X), and if E ∈ Jλ+ then E \X ∈ Jλ, which

means X generates Jλ+ over Jλ, and consequently Jλ+ = Jλ ↾ Y is λ+-directed. We let Bλ = X.

Corollary 5.4. (i) pcf(A) ≤ 2|A|. (ii) pcf(A) has a maximal element.

Proof. (i) The generators Bλ are different for different λ ∈ pcf(A).

(ii) This is implicit in the proof of the fundamental theorem: if λ is a limit cardinal and Jν is
proper for all ν < λ then Jλ is proper and λ-directed, so there exists θ ∈ pcf(A) s.t. θ ≥ λ.

The pcf generator is not unique, but it follows easily from definition that if both Bλ and B′
λ

generate Jλ+ over Jλ then Bλ = B′
λ mod Jλ; conversely if Bλ is a generator and Bλ = B′

λ mod Jλ
then B′

λ is also a generator. The following characterization of the generator is also useful.

Proposition 5.5. (i) If λ ∈ pcf(A), then X ⊆ A generates Jλ+ over Jλ iff λ = max pcf(X) and
λ /∈ pcf(A \X).

(ii) If D is an ultrafilter on A, then cf(
∏
A,<D) = λ iff D ∋ Bλ and D extends the dual filter

of Jλ. It follows that cf(
∏
A,<D) = min{λ ∈ pcf(A) : Bλ ∈ D}.

Proof. (i) For the forward direction, we showed in the proof of fundamental theorem that λ =
max pcf(Bλ) and λ /∈ pcf(A \Bλ), so the same is true of any generator X.

Conversely, suppose λ = max pcf(X) and λ /∈ pcf(A \X); the first condition implies X ∈ Jλ+ .
Since pcf(Bλ \X) ⊆ pcf(A \X), we have Bλ \X ∈ Jλ and thus X is a generator.

(ii) If D extends the dual filter of Jλ then it is λ-directed; if it moreover contains Bλ then
cf(

∏
A,<D) cannot exceed λ, and thus is exactly λ.

If D ∩ Jλ ̸= ∅ then by definition cf(
∏
A,<D) < λ. If Bλ /∈ D then cf(

∏
A,<D) ̸= λ since

λ /∈ pcf(A \Bλ).

Recall that if |pcf(A)| < minA then A = pcf(A) is closed under the pcf operation, and thus can
be viewed as a topological space; we now know that 2|A| < minA is sufficient for this to be true.
Moreover, if 2|pcf(A)| < minA = minA, then the fundamental theorem applies to A, so there exist
generators Bλ for λ ∈ pcf(A) = A; note that necessarily λ ∈ Bλ, and also Bλ ⊆ [minA, λ]. Then
λ /∈ pcf(A \Bλ) means λ is not in the closure of A \Bλ, or equivalently Bλ is a neighborhood of λ,
namely Bλ ⊇ C ∋ λ for some open set C. Note that C is still a generator.
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Conversely, if C ⊆ A is an open neighborhood of λ, then pcf(Bλ \ C) ⊆ pcf(A \ C) = A \ C, so
λ /∈ Bλ \ C and Bλ \ C ∈ Jλ. It follows that Bλ ∩ C = Bλ \ (Bλ \ C) is a generator, and that the
set of generators at λ is a neighborhood basis of λ.

A is also Hausdorff, because if λ < µ are in A then Bµ \Bλ is still a generator for µ.

Proposition 5.6 (Compactness). (i) Let Bλ be generators for λ ∈ pcf(A). For any X ⊆ A, there
exists a finite set {λ1, . . . , λn} ⊆ pcf(X) such that X ⊆ Bλ1 ∪ · · · ∪Bλn.

(ii) If |pcf(A)| < minA, then the space A = pcf(A) is compact.

Proof. (i) Suppose not, then the collection {X \Bλ : λ ∈ pcf(X)} has finite intersection property,
and hence can be extended to an ultrafilter D on X, which can be viewed as an ultrafilter E on A
that is concentrated on X. If cf(

∏
A/E) = λ then cf(

∏
X/D) = λ, so λ ∈ pcf(X). On the other

hand Bλ ∈ E and thus X ∩Bλ ∈ D, contradicting the definition of D.

(ii) Suppose {Xi : i ∈ I} is a collection of closed subsets of A with finite intersection property.
There exists an ultrafilter D on A that contains every Xi. If λ = cf(

∏
A/D) then λ ∈ pcf(Xi) = Xi

for every i, so they have nonempty intersection.

So far we have been focusing on a fixed A. If A ⊆ A′ are sets of regular cardinals satisfying
2|A| < minA and 2|A′| < minA′, then there is a simple relationship between their pcf generators.
We use superscripts like JAλ and BA

λ for dependence on A.

Proposition 5.7. Suppose A ⊆ A′ are sets of regular cardinals satisfying 2|A| < minA and
2|A′| < minA′.

(i) JAλ = JA
′

λ ∩ P(A). If Y ∈ JA
′

λ then Y ∩A ∈ JAλ .

(ii) If λ ∈ pcf(A) and BA′
λ is a generator at λ for A′, then BA′

λ ∩A is a generator at λ for A.

(iii) For any generator BA
λ there exists BA′

λ s.t. BA
λ = BA′

λ ∩A.

Proof. (i) By definition JAλ is the intersection of P(A) and the class of all X s.t. ∀ν ∈ pcf(X) ν ∈ λ;
this shows JAλ = JA

′
λ ∩ P(A). If Y ∈ JA

′
λ then Y ∩A ∈ JA

′
λ ∩ P(A) = JAλ .

(ii) Let BA
λ = BA′

λ ∩ A. Since pcf(BA
λ ) ⊆ pcf(BA′

λ ) and max pcf(BA′
λ ) = λ, we have BA

λ ∈ JAλ+ .
Since BA′

λ generates JA′

λ+ and JAλ ⊆ JA
′

λ , if X ∈ JAλ then X ⊆ Y ∪BA′
λ for some Y ∈ JA

′
λ , and thus

X ⊆ (Y ∩A) ∪BA
λ . By (i) we have Y ∩A ∈ JAλ , which means BA

λ is a generator.

(iii) Let BA
λ and BA′

λ be any generators for A and A′ respectively. By (ii) we have BA
λ = BA′

λ ∩A
mod JAλ , and thus if CA′

λ := (BA′
λ \A) ∪BA

λ then CA
′

λ = BA′
λ mod JA

′
λ , so CA′

λ is also a generator
for A′.

6 Relation with cardinal arithmetic

Throughout this section let A = {ℵn : n ∈ ω} and assume ℵω is a strong limit. We will show
that max pcf(A) = 2ℵω ; as outlined before this implies 2ℵω < ℵ(2ℵ0 )+ . The method of elementary
sub-models is again crucial. Of course the argument generalizes to other A, but we content ourselves
with proving this special case. First a simple lemma.
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Lemma 6.1. cf(
∏
A,<) = max pcf(A), where < means pointwise dominance.

Proof. For every ultrafilter D on A, let λ = cf(
∏
A,<D) and FD = ⟨fλξ : ξ < λ⟩ be a scale in

(
∏
A,<D). Let f ∈

∏
A be arbitrary; we claim that there exists a finite set {D1, . . . , Dn} of

ultrafilters and ξi < λi = cf(
∏
A,<Di) s.t. f is pointwise smaller than max1≤i≤n f

Di
ξi

. Granted
the claim, let µ = max pcf(A); since there are only 22|A|

< ℵω < µ many ultrafilters, there are
only µ many finite combinations of fDξ , so cf(

∏
A,<) ≤ µ, and the other direction is clear since a

<-dominating set is also <D-dominating for any D.

If the claim is false, then sets of the form {a ∈ A : f(a) ≥ fDξ (a)} have finite intersection property,
so can be extended to an ultrafilter E on A. In particular fEξ ≤E f for all ξ < λ = cf(

∏
A,<E),

contradicting that FE is a scale.

Theorem 6.2. 2ℵω = max pcf(A).

Proof. Since we assume ℵω is a strong limit, 2ℵω = ℵℵ0
ω = |[ℵω]ℵ0 |, and it suffices to show that

|[ℵω]ℵ0 | ≤ max pcf(A) := µ. By the lemma there exists F ⊆
∏
A s.t. |F | = µ and F is a dominating

set in (
∏
A,<). Choose a finite k large enough so that (2ℵ0)+ < ℵk. Since pcf(A) is an interval

and |pcf(A)| ≤ 2ℵ0 , we already know that µ = max pcf(A) < ℵ(2ℵ0 )+ < ℵℵk
. It is not hard to see

that ℵℵ0
k = ℵk by the inductive formula for cardinal arithmetic.

Let θ be a large enough regular cardinal and ≺ be a well-ordering of Hθ. For each x ∈ [ℵω]ℵ0 ,
construct a continuous chain (Mx

α)α<ℵk
of elementary sub-models of (Hθ,∈,≺) such that F, x ∈ Mx

0 ,
ℵk ⊆ Mx

α , |Mx
α | = ℵk and Mx

α ∈ Mx
α+1. Define the characteristic function χxα on A by χxα(ℵn) =

sup(Mx
α ∩ ℵn); we have χxα(ℵn) = ℵn for n ≤ k and χxα(ℵn) < ℵn for n > k because |Mx

α | = ℵk,
so χxα is almost an element of

∏
A. Let Mx =

⋃
α<ℵk

Mx
α and χx(ℵn) = sup(Mx ∩ ℵn); then

χx = supα<ℵk
χxα pointwise. Clearly if f ∈ (

∏
A) ∩Mx

α then f < χxα pointwise. Since Mx
α ∈ Mx

α+1
we have χxα ∈ Mx

α+1, and thus χxα < χxα+1 pointwise.

We first give an overview of the argument. Consider the composition of maps x 7→ Mx∩ℵω 7→ χx.
The first step is ℵk-to-one because if Mx ∩ ℵω = My ∩ ℵω then y ⊆ Mx, so there are at most
ℵℵ0
k = ℵk possibilities for y. The second step (which is well-defined) turns out to be injective, which

is the key of the proof. Finally, because of how Mx is constructed, ⟨χxα : α < ℵk⟩ is interleaved with
a subset of F of size ℵk, and a relatively simple argument shows µ many subsets suffice, so there
are only µ many possibilities for χx, and hence |[ℵω]ℵ0 | ≤ µ.

So suppose sup(Mx∩ℵn) = sup(My ∩ℵn) for all n > k. We shall show that Mx∩ℵω = My ∩ℵω,
by inductively showing Mx ∩ ℵn = My ∩ ℵn. This is true for n = k since ℵk ⊆ Mx. Now suppose
we have proved this for n. Denote γ = sup(Mx ∩ ℵn+1) = sup(My ∩ ℵn+1), so γ is an ordinal
strictly below ℵn+1 and has cofinality ℵk; since Mx ∩ ℵn+1 and My ∩ ℵn+1 each contains a club in γ,
C := Mx ∩My ∩ ℵn+1 is also a club in γ. For every η ∈ C s.t. η > ℵn, the ≺-least bijection between
η and ℵn is both in Mx and in My by elementarity, and since Mx ∩ ℵn = My ∩ ℵn, translating by
the bijection we get Mx ∩ η = My ∩ η; since this is true for every η ∈ C we have Mx ∩ γ = My ∩ γ,
in other words Mx ∩ ℵn+1 = My ∩ ℵn+1.

Since χxα ∈ Mx
α+1 and F is cofinal in

∏
A under pointwise dominance, by elementarity there

exists fxα ∈ F ∩ Mx
α+1 s.t. χxα(n) < fxα(n) for all n > k, and we observed previously that

fxα < χxα+1 pointwise. Thus if we let F x = {fxα : α < ℵk} then F x is a subset of F of size ℵk
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and χx(n) = supα<ℵk
χxα(n) = supf∈Fx f(n) for all n > k; in fact χx(n) = supf∈G f(n) for any

G ⊆ F x of size ℵk. Lastly we show that cf([µ]ℵk ,⊇) = µ (note that it’s reverse containment, and
the poset is not directed), namely there exists S ⊆ [µ]ℵk with |S| = µ such that for every X ⊆ µ
with |X| = ℵk, there exists Y ∈ S with Y ⊆ X. This would finish the proof: replacing µ by F ,
we have a collection S of ℵk-subsets of F , with |S| = µ, such that any X ⊆ F with |X| = ℵk
contains some Y ∈ S. In particular, every F x contains some Gx ∈ S, and since |Gx| = ℵk we have
χx(n) = supf∈Fx f(n) = supf∈Gx f(n) for n > k. Consequently there are only µ many χx.

We prove cf([µ]ℵk ,⊇) = µ by inductively showing cf([κ]ℵk ,⊇) = κ for all cardinals κ between
2ℵk and µ. This is clear for 2ℵk . If κ is regular then [κ]ℵk =

⋃
ℵk≤α<κ[α]ℵk ; the union is taken over

all ordinals α s.t. ℵk ≤ α < κ. By induction hypothesis each [α]ℵk has a dominating family of size
|α|, and their union is a dominating family for [κ]ℵk of size κ. If κ is singular, since κ ≤ µ < ℵℵk

we
have cf(κ) < ℵk, and thus if X ⊆ κ and |X| = ℵk then already |X ∩ α| = ℵk for some α < κ, so
again the union of dominating families for smaller α gives a dominating family for κ.

Constructing a chain of elementary sub-models that contain a scale F , and then comparing the
characteristic functions to functions in F is a common theme in pcf theory.

Corollary 6.3. If ℵω is a strong limit, then 2ℵω < ℵ(2ℵ0 )+.

In particular, 2ℵω is not the first weakly inaccessible cardinal. It’s not clear how to prove this
without using pcf theory in some way.

7 Club guessing and good points

This section collects two technical results: club guessing and the notion of good points. Club
guessing is responsible for the mysterious number 4 in Shelah’s bound. Good points are used to
determine certain cofinalities cf(

∏
A/I) where I is the nonstationary ideal or the ideal of bounded

sets. This is another important ingredient in the application to ℵω. Good points also help to relax
the condition under which pcf(A) is an interval, although this is not needed for our application to
ℵω.

Club guessing is a very weak version of diamond principle that is provable in ZFC. For κ < λ
regular, denote Eλκ = {α < λ : cf(α) = κ}.

Lemma 7.1 (Club guessing). Let κ, λ be regular uncountable and κ+ < λ. There is a sequence
⟨cα : α ∈ Eλκ⟩ such that cα is a club in α for each α ∈ Eλκ , and for every club C ⊆ λ, the set
{α ∈ Eλκ : Cα ⊆ C} is stationary.

Proof. For each α ∈ Eλκ , let c0
α ⊆ α be any club of order type κ. The idea is that if this fails to

guess some club C, then we simply intersect each c0
α with C, and the new sequence guesses C; then

we repeat this process; some c0
α ∩C may no longer be unbounded in α, but most of them remain so.

Inductively, if there exists C s.t. {α ∈ Eλκ | ciα ⊆ C} is non-stationary, let Ci be this C and
ci+1
α = ciα ∩ Ci. When γ < κ+ is limit let cγα =

⋂
i<γ c

i
α = c0

α ∩
⋂
i<γ Ci. Suppose for contradiction

that this construction continues through all i < κ+. Since |c0
α| = κ, it cannot shrink for κ+ many
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times, so ciα stabilizes for i ≥ i(α) for some i(α) < κ+. Since the non-stationary ideal on λ is
λ-complete and κ+ < λ, there is a stationary S ⊆ Eλκ s.t. all α ∈ S have the same i(α) = i. This
means for stationarily many α, ciα = ci+1

α , but the choice of Ci implies that ciα has to shrink for
almost all α ∈ Eλκ , a contradiction.

So the process stops at some stage i < κ+, which means ⟨ciα | α ∈ Eλκ⟩ satisfies the definition of
club-guessing sequence except that ciα is only closed, not necessarily a club in α. But ciα = cα ∩ C
where C =

⋂
j<iCj , and if α ∈ C ′ ∩Eλκ (C ′ is the set of limit points of C, itself a club) then cα ∩C

is a club in α, so the non-club ciαs are negligible.

Suppose A is a set of regular cardinals without maximal element, I is a proper ideal on A that at
least contains all the bounded subsets, and F = ⟨fξ : ξ < λ⟩ is a <I -increasing sequence of ordinal
functions (not necessarily in

∏
A).

Definition 7.2. A limit ordinal α < λ of uncountable cofinality is good (w.r.t. I and F ) if
⟨fξ : ξ < α⟩ has a cofinal subsequence that is pointwise increasing on a large set. More precisely,
there exist an unbounded subset C ⊆ α and Z ∈ I such that for all ξ < η in C and all a ∈ A \ Z,
we have fξ(a) < fη(a).

Often but not always I is the ideal of bounded sets, in which case goodness says fξ(a) < fη(a) for
all a ≥ a0 for some a0. Good points and good scales are related to other “incompacteness principles”
such as squares and approachability, and have several variants. For example, if we require the
unbounded set C in the above definition to be a club, we get the notion of “very good point”.

Lemma 7.3. Suppose α ≤ λ is a limit ordinal with cf(α) > |I|. The following are equivalent:

1. α is good.

2. For every unbounded C ⊆ α, there exists an unbounded D ⊆ C and Z ∈ I such that for all
ξ < η in D and all a ∈ A \ Z, we have fξ(a) < fη(a).

3. There exists a sequence ⟨hi : i < cf(α)⟩ such that:

(i) ⟨hi : i < cf(α)⟩ is pointwise increasing, i.e., if i < j < cf(α) then hi(a) ≤ hj(a) for all a ∈ A.

(ii) ⟨fξ : ξ < α⟩ is cofinally interleaved with ⟨hi : i < cf(α)⟩ in <I , i.e., ∀ξ < α∃i < cf(α) fξ <I hi
and ∀i < cf(α)∃ξ < α hi <I fξ.

Proof. 2 → 1: obvious.

1 → 3: Suppose α is good as witnessed by Z ∈ I and C ⊆ α. We may assume C has order type
cf(α), so enumerate C as ⟨ξi : i < cf(α)⟩. Define hi by hi(a) = fξi

(a) if a ∈ A \ Z and hi(a) = i
if a ∈ Z. Then hi are pointwise increasing, and hi =I fξi

so they are cofinally interleaved with
⟨fξ : ξ < α⟩.

3 → 2: This argument is copied from section 13 of Cummings’ survey, and is very similar to
Lemma 2.7 in the handbook, where it is called the “sandwich argument”. Suppose there exists
a sequence ⟨hi : i < cf(α)⟩ as in 3. For ξ < α let ι(ξ) be the least i < cf(α) such that fξ <I hi.
Inductively define an increasing sequence ⟨ξi : i < cf(α)⟩ of ordinals in C as follows: assuming we
have chosen ξi, choose ξi+1 so that hι(ξi) <I fξi+1 ; at limit stage take any upper bound; we may
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assume C has order type cf(α) to start with, so that ⟨ξi : i < cf(α)⟩ must be unbounded. Since
cf(α) > |I|, there exists an unbounded E ⊆ cf(α) so that for some fixed Z ∈ I, we have

fξi+1(a) < hι(ξi+1)(a) and hι(ξi)(a) < fξi+1(a) for all i ∈ E and a ∈ A \ Z,

Now Z and D := {ξi+1 : i ∈ E} witnesses that α is good, because for i < j in E we have

fξi+1(a) < hι(ξi+1)(a) ≤ hι(ξj)(a) < fξj+1(a) for all a ∈ A \ Z,

The middle inequality comes from the fact that ⟨hi : i < cf(α)⟩ is pointwise increasing, and that
ξi+1 ≤ ξj , so ι(ξi+1) ≤ ι(ξj).

Hopefully the following picture gives some idea of what is going on. The first row is ⟨fξi
: i <

cf(α)⟩ (the subscripts are omitted), the second row is ⟨hι(ξi) : i < cf(α)⟩ and is interleaved with the
first row under <I . The boxed f ’s are those in ⟨fξi

: i ∈ E⟩, and their successors are underlined.
The first underlined f is smaller than the next h on A \ Z, and the second underlined f is greater
than the previous h on A \ Z.

f f f f f f f · · ·
h h h h h h h · · ·

The following lemma is the key in all our applications of goodness.

Lemma 7.4. If λ, κ are regular uncountable, λ > κ > 2|A|, F = ⟨fξ : ξ < λ⟩ is such that
{α ∈ Eλκ : F is good at α} is stationary, and g is the lub of F , then {a ∈ A : cf(g(a)) < κ} ∈ I.

Proof. Suppose g is an upper bound such that X := {a ∈ A : cf(g(a)) < κ} ∈ I+. For every a ∈ X
let Sa be a cofinal subset of g(a) with order type cf(g(a)), in particular |Sa| < κ. Let S be the set
of all ordinal functions s on A satisfying s(a) ∈ Sa for all a ∈ X and s(a) = g(a) elsewhere; we
claim there exists s ∈ S which is an upper bound of F , and hence g is not an lub.

Suppose the claim fails, then we inductively pick a continuous sequence of ordinals (αξ)ξ<λ as
follows. Since fαξ

<I g and Sa is cofinal in g(a), there exists sξ ∈ S s.t. fαξ
<I sξ. By assumption

sξ is not an upper bound of F , so choose αξ+1 > αξ such that sξ ̸≥I fαξ+1 .

Since E := {αξ : ξ < λ} is a club in λ and there are stationarily many good points of cofinality κ,
there exists an α = αξ0 with cf(α) = κ such that α is good and is a limit point of E; it follows that
cf(ξ0) = κ. Since κ > 2|A| ≥ |I|, by goodness and the previous lemma, there exists an unbounded
subset C ⊆ ξ0 and Z ∈ I such that (fαξ

: ξ ∈ C) is pointwise increasing outside Z; we may assume
C has order type κ, but of course it is not a club.

By construction fαξ
<I sξ ̸≥I fαξ+1 , so fαξ

(a) < sξ(a) < fαξ+1(a) for all a in some I-positive set
that depends on ξ ∈ C. Note that we may assume this positive set is contained in X, since outside
X we have sξ(a) = g(a) and fξ ≤I g. For each ξ ∈ C denote by ξ+ the next element of C after
ξ. Since αξ+1 ≤ αξ+ , we know that fαξ

(a) < sξ(a) < fαξ+ (a) on an I-positive subset of X. Since
κ > 2|A| ≥ |I| is regular, there is an unbounded D ⊆ C and a fixed I-positive set B ⊆ X such that

fαξ
(a) < sξ(a) < fαξ+ (a) for all ξ ∈ D and a ∈ B

where ξ+ still denotes successor in C, not D. But since (fαξ
: ξ ∈ C) is pointwise increasing

outside Z, we have

sξ(a) < fαξ+ (a) ≤ fαη (a) < sη(a) for all ξ < η in D and a ∈ B \ Z.
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This implies |{sξ(a) : ξ ∈ D}| = κ for each a ∈ B \ Z, contradicting that |Sa| < κ.

In the following picture, the boxed f ’s are those in C, so they are pointwise increasing on a large
set. Each s is >I the previous f and ̸≥I the next f . An s is underlined if its previous f is in D.
The two underlined s’s are compared using the two “outmost” boxed f ’s between them, namely the
second and the fifth.

f f f f f f f f f f · · ·
s s s s s s s s s s · · ·

Recall we proved that if A is an interval and (2|A)+ = minA then pcf(A) is an interval. We can
now relax the condition to the following (again, this is not needed in the main result about ℵω).

Proposition 7.5. If A is an interval of regular cardinals and 2|A| < minA, then pcf(A) is an
interval.

Proof. Let µ = max pcf(A) and minA ≤ λ < µ be regular; we want to show λ ∈ pcf(A). We may
assume λ > supA since otherwise λ ∈ A and the principal ultrafilter does the job. Let U be an
ultrafilter on A s.t. cf(

∏
A/U) = µ; necessarily U is non-principal. By replacing A with the shortest

initial segment of A that is in U , we may assume the dual ideal of U contains all bounded subsets
of A.

Let κ = minA > 2|A|. We will build a <U -increasing sequence ⟨fξ : ξ < λ⟩ ⊆
∏
A that has

stationarily many good points of cofinality κ, and thus an eub g satisfying cf(g(a)) ≥ minA for
U -almost all a, and the rest of the proof is the same as before. It turns out in our situation, the
naive attempt to make every point β < λ of cofinality κ good actually works (Theroem 2.21 in the
handbook uses a weaker hypothesis, but the proof is trickier and involves club guessing). For each
β < λ with cofinality κ, fix a club Cβ ⊆ β of order type κ. Assuming fξ has been defined for ξ < α,
we define fα in the following way. For every β < λ with cofinality κ let hβα = sup{fξ : ξ ∈ Cβ ∩ α};
we have hβα ∈

∏
A since |Cβ ∩ α| < κ = minA. Then choose fα ∈

∏
A to be a <U -upper bound of

all the hβα, which is possible because there are λ many β, the partial order (
∏
A,<U ) is µ-directed,

and λ < µ by assumption. Then each β is good since (fξ : ξ < β) is interleaved with (hβα : α < β).

We have built a <U -increasing sequence ⟨fξ : ξ < λ⟩ ⊆
∏
A that has stationarily many good

points of cofinality κ = minA. Since λ ≥ minA > 2|A|, the sequence has an eub g, and since
λ > 2|A| = |U |, by the previous lemma we have cf(g(a)) ≥ κ = minA for U -almost all a. Since
λ < µ, the sequence has a <U upper bound in

∏
A, so we may assume g(a) < a everywhere. Thus

cf(g(a)) ∈ A for U -almost all a ∈ A. Then as before we consider the push-forward ultrafilter, argue
that the induced embedding is cofinal, etc.

Recall that clubs and stationary sets can be defined for any κ with uncountable cofinality (not
necessarily regular). They are essentially just clubs or stationary sets on cf(κ), but sometimes it’s
convenient to deal with κ directly.

In the next two theorems, if X is a set of ordinals, we let X+ = {ℵα+1 : α ∈ X}; conversely, if
A is a set of successor cardinals, let A− = {α : ℵα+1 ∈ A}.

Theorem 7.6. Suppose ℵη is a singular cardinal with cf(η) = τ > ω, 2τ < ℵη, S ⊆ η is a stationary
set of order type τ , A = S+ and I is the ideal on A defined by I = {X+ : X ⊆ S is non-stationary}.
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Then tcf(
∏
A/I) = ℵη+1.

Proof. Let λ = ℵη+1. Clearly (
∏
A,<I) is λ-directed. Assume for contradiction that it does not

have a λ-scale; then by ideal trichotomy there exists T ⊆ S stationary such that if J = I ↾ T+

then (
∏
A,<J) is λ+-directed. We construct a <J -increasing sequence F = ⟨fα : α < λ⟩ ⊆

∏
A for

which all points are good. Every limit ordinal β < λ has cofinality below λ, and hence below ℵη, so
fix a club Cβ ⊆ β of order type cf(β) < ℵη. Assume fξ has been defined for ξ < α. For every β < λ

let hβα = sup{fξ : ξ ∈ Cβ ∩ α}; since |Cβ| < ℵη, we have ∀a ≥ a0 h
β
α(a) < a for some a0 ∈ A (note

that a0 depends on β but not on α), and thus hβα ∈
∏
A after we redefine its value on a bounded

set. Since <J is λ+-directed, {hβα : β < λ} ∪ {fξ : ξ < α} has an upper bound, and we let fα be
<J -greater than this upper bound. The resulting F is good at every β, because {fξ : ξ < β} is
<J -interleaved with {hβα : α < β}, and the latter is pointwise increasing.

Since 2|A| = 2τ < ℵη < λ, F has an eub g; on the other hand, (
∏
A,<J) is λ+-directed,

which means F has an <J -upper bound in
∏
A, so we may assume g ∈

∏
A, namely g(a) < a.

Consequently, α 7→ cf(g(ℵα+1)) is (almost) a regressive function on S, because g(ℵα+1) < ℵα+1
implies g(ℵα+1) < ℵα, unless ℵα is regular, which is rare: it is not hard to show that {α ∈ η :
ℵα is singular} is a club in η. By Fodor’s lemma, {α ∈ T : cf(g(ℵα+1)) = κ} is stationary for some
κ < ℵη, but this contradicts goodness and Lemma 7.4, which say {a ∈ A : cf(g(a)) < κ} ∈ J for
every 2τ < κ < λ.

Theorem 7.7. Suppose ℵη is a singular cardinal with cf(η) = τ > ω and 2τ < ℵη. There exists a
club D ⊆ η of order type τ so that tcf(

∏
D+/J) = max pcf(D+) = ℵη+1, where J is the ideal on

D+ of bounded sets.

Proof. First let C ⊆ η be any club of order type τ , A = C+ and I be the ideal on A corresponding
to the non-stationary ideal. By the previous theorem tcf(

∏
A/I) = ℵη+1 =: λ. We may choose

the first element of C large enough so that 2|A| = 2τ < minA, so there exist pcf generators for
A. In particular there is a generator Bλ. The previous theorem also implies λ ∈ pcf(S+) for any
stationary S ⊆ η. Since λ /∈ pcf(A \ Bλ), (A \ Bλ)− cannot be stationary, which means (Bλ)−

contains a club D ⊆ η. Then tcf(
∏
D+/I ′) = max pcf(D+) = λ, where I ′ = I ∩ P(D+).

To show that tcf(
∏
D+/J) = max pcf(D+), note that Bν is bounded in A for every ν < λ, so

the ideal Jbd on A of bounded sets extends the ideal generated by {Bν : ν < λ}, which is Jλ; since
Jλ is λ-directed, so is Jbd. The same holds for the bounded ideal J on D+. Since max pcf(D+) = λ,
J must have a λ-scale by ideal trichotomy.

8 Transitive generators

This section presents one of the most technical results, the existence of transitive generators
Bλ. Transitivity means if µ ∈ Bλ then Bµ ⊆ Bλ, in other words the relation µ ∈ Bλ is transitive.
Note that this is trivial for A = {ℵn : n < ω}, but we want to apply the result to A := pcf(A),
obtaining the corollary that the pcf space A has a tightness property. Recall that a generator Bλ
for λ ∈ pcf(A) = A is in particular a neighborhood of λ in A, so if the generators are transitive
then they are actually open.
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A naive attempt to obtain transitive operators is to take transitive closure, namely let Bλ

consists of all ν for which there is a sequence (ν0, . . . , νn) such that ν0 = ν, νn = λ, and νk ∈ Bνk+1 .
In general this can mess things up and Bλ may not be a generator, but it turns out if we first shrink
Bλ in a certain way and then take transitive closure then it works. The shrinking process involves
elementary sub-models.

Theorem 8.1. Suppose A is a set of regular cardinals such that (2|A|)+ < minA, then there exist
transitive generators Bλ for λ ∈ pcf(A).

Proof. First let ⟨Bλ : λ ∈ pcf(A)⟩ be any generators. For each λ ∈ pcf(A) let F λ = ⟨fλα : α < λ⟩
be cofinal in (

∏
A,<Jλ↾Bλ

); we moreover require that fλβ is the eub of ⟨fλα : α < β⟩ whenever
cf(β) > 2|A|.

Let κ = (2|A|)+ and (Mi)i<κ be a continuous chain of elementary sub-models such that |Mi| = κ,
Mi ∈ Mi+1, κ ⊆ M0 and M0 contains A, P(A), (F λ : λ ∈ pcf(A)) and all functions from some
subset of A to A<ω (the purpose of this will become clear later). Let M =

⋃
i<κMi. Note that if

X ∈ M and |X| ≤ κ then X ⊆ M ; in particular pcf(A) ⊆ M and F λ ∈ M for every λ, although M
only contains a small portion of ⟨fλα : α < λ⟩. Define the characteristic functions χi(λ) = sup(Mi∩λ)
and χ = sup(M ∩ λ) = supi<κ χi on A; note that they belong to

∏
A since κ < minA.

Since Mi ∈ Mi+1 and χi is definable from Mi, by elementarity χi ∈ Mi+1; since F λ is cofinal,
again by elementarity there exists α ∈ Mi+1, α < λ s.t. χi <Jλ↾Bλ

fλα . Thus for each λ, ⟨χi : i < κ⟩
and ⟨fλα : α < χ(λ)⟩ are cofinally interleaved in <Jλ↾Bλ

. By assumption fλχ(λ) is the eub for the
latter. On the other hand χ is the eub for ⟨χi : i < κ⟩ in <Jλ↾Bλ

since it is already the eub under
pointwise dominance <. In detail, if h <Jλ↾Bλ

χ then h(a) < χ(a) on a Jλ ↾ Bλ-large set X; for
each a ∈ X there exists an i < κ s.t. h(a) < χi(a), and since |X| ≤ |A| < κ we know that h < χi
pointwise for some i, and thus h <Jλ↾Bλ

χi. Consequently, for every λ ∈ pcf(A) we have

fλχ(λ) = χ mod Jλ ↾ Bλ, and thus B∗
λ := {ν ∈ Bλ : fλχ(λ)(ν) = χ(ν)} is a generator.

Let ⟨Bλ : λ ∈ pcf(A)⟩ be the transitive closure, namely Bλ is the set of all ν for which there
exists a sequence (ν0, . . . , νn) such that ν0 = ν, νn = λ, and νk ∈ B∗

νk+1 for 0 ≤ k ≤ n− 1; the case
n = 0 implies λ ∈ Bλ and n = 1 implies B∗

λ ⊆ Bλ.

To show that each Bλ is a generator, it suffices to show that Bλ ∈ Jλ+ . We do this by finding
a function g such that g <Jλ+ χ while g(ν) = χ(ν) for all ν ∈ Bλ. As an illustration, let us first
try to find such a g that works for the case n = 2, namely g(ν0) = χ(ν0) for all ν0 ∈ B

(2)
λ , where

B
(2)
λ =

⋃
ν1∈B∗

λ
B∗
ν1 . Fix for every ν0 ∈ B

(2)
λ some ν1 such that ν0 ∈ B∗

ν1 and ν1 ∈ B∗
λ. By definition

of B∗
ν1 and B∗

λ we have

fλχ(λ)(ν1) = χ(ν1) and fν1
χ(ν1)(ν0) = χ(ν0), so fν1

fλ
χ(λ)(ν1)(ν0) = χ(ν0).

Define gα(ν0) = fν1
fλ

α(ν1)(ν0) if ν0 ∈ B
(2)
λ and gα = 0 elsewhere on A. Then we have shown that

gχ(λ) = χ on B
(2)
λ . Even though gχ(λ) is not in M , it can be argued that the sequence (gα : α < λ)

is. Since Jλ+ is λ+-directed, we can pick an upper bound h ∈ M of (gα : α < λ), so in particular
gχ(λ) <Jλ+ h < χ. Thus B(2)

λ ∈ Jλ+ .

It should seem at least plausible that this argument generalizes to arbitrary n, albeit at the
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cost of a notational disaster. We now proceed to the actual proof. Fix a function φ such that
for each ν ∈ Bλ, φ(ν) is a sequence (ν0, . . . , νn) such that ν0 = ν, νn = λ, and νk ∈ B∗

νk+1 for
0 ≤ k ≤ n− 1. For each α < λ define gα on A as follows; if ν /∈ Bλ then gα(ν) = 0. If ν ∈ Bλ then
let φ(ν) = (ν0, . . . , νn) and inductively define a sequence (βn, . . . , β0) by βn = α and βk = f

νk+1
βk+1

(νk)
for 0 ≤ k ≤ n − 1; the expression is meaningful because inductively we have βk < νk. Define
gα(ν) = β0. It can be checked that when n = 2 this agrees with the explicit formula above, and it
should be clear now why we don’t explicitly write down the case n = 3.

Recall that M0 contains all functions from some subset of A to A<ω, in particular φ ∈ M , so the
sequence (gα : α < λ) is also in M , because it is definable from φ and F λ. Since Jλ+ is λ+-directed,
there is in M some h ∈

∏
A such that gα <Jλ+ h for all α, in particular gχ(λ) <Jλ+ h < χ. We finish

the proof by showing gχ(λ) = χ on Bλ. If ν ∈ Bλ and φ(ν) = (ν0, . . . , νn), then βn = χ(λ) = χ(νn)
and inductively

βk = f
νk+1
βk+1

(νk) = f
νk+1
χ(νk+1)(νk) = χ(νk),

so gχ(λ)(ν) = β0 = χ(ν0) = χ(ν).

Theorem 8.2 (Localization). Suppose A is a set of regular cardinals, 2|pcf(A)| < minA, X ⊆ pcf(A)
and λ ∈ pcf(X). Then there exists W ⊆ X such that |W | ≤ |A| and λ ∈ pcf(W ).

Proof. As usual we may assume (2|pcf(A)|)+ < minA by possibly removing the first point of A. Let
A = pcf(A); then (2|A|)+ < minA, so there exist transitive generators Bν for ν ∈ pcf(A) = A;
in particular max pcf(Bλ) = λ. Let Y = X ∩ Bλ; since pcf(X) = pcf(X \ Bλ) ∪ pcf(Y ) and
λ /∈ pcf(X \Bλ), we have λ ∈ pcf(Y ), and thus λ = max pcf(Y ).

Recall that Bν ∩ A is a generator for ν ∈ pcf(A). Let E =
⋃
ν∈Y Bν ∩ A; in particular

ν ∈ pcf(Bλ ∩A) ⊆ pcf(E) for every ν ∈ Y , so Y ⊆ pcf(E) and λ ∈ pcf(Y ) ⊆ pcf(pcf(E)) = pcf(E).
Since E ⊆ A, there exists W ⊆ Y with |W | ≤ |A| such that E =

⋃
ν∈W Bν ∩ A. We shall

show that λ ∈ pcf(W ). Suppose not; since A is a compact space, pcf(W ) is closed and for each
ν ∈ pcf(W ), Bν is an open neighborhood of ν, there exist finitely many ν1, . . . , νn ∈ pcf(W ) such
that W ⊆ pcf(W ) ⊆ Bν1 ∪ · · · ∪Bνn . So

E ⊆
⋃
ν∈W Bν ⊆

⋃n
i=1

⋃
ν∈Bνi

Bν ⊆
⋃n
i=1Bνi ,

the last step due to transitivity. Since W ⊆ Y , λ = max pcf(Y ) and λ /∈ pcf(W ), all the νi are
less than λ, so from pcf(E) ⊆

⋃n
i=1 pcf(Bνi) we get λ /∈ pcf(E), a contradiction.

In topological terms, if λ is in the closure of X then it is in the closure of a relatively small
subset of X, namely of size at most |A|. This is called |A|-tightness. Note that A has a dense set of
size |A|, namely A, but this does not imply |A|-tightness in general. A topological space X equipped
with a well-ordering < is called right separated if every initial segment {x ∈ X : x < y} is open. The
above proof can be rephrased in topological terms as follows: if a compact right separated space X
has a dense set of size κ, as well as a neighborhood Ux for each x ∈ X satisfying x ∈ Uy → Ux ⊆ Uy
and Ux ⊆ {z ∈ X : z ≤ x}, then it is κ-tight.
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9 The number 4

Theorem 9.1. If ℵω is a strong limit, then 2ℵω < ℵω4.

Proof. Let A = {ℵn : n ∈ ω}. It suffices to show that |pcf(A)| < ω4. Since we already know
that A = pcf(A) is an interval and maxA < ℵ(2ℵ0 )+ < ℵℵω , A is the set of all successor cardinals
between ℵ0 and maxA = ℵϑ+1 for some ϑ < ℵω. Define a function F : P(ϑ+ 1) → ϑ+ 1 as follows;
if X ⊆ ϑ + 1 then {ℵα+1 : α ∈ X} ⊆ A, and max pcf{ℵα+1 : α ∈ X} is some successor cardinal
ℵβ+1 ≤ ℵϑ+1; define F (X) to be this β. Then the function F has the following properties:

(i) If X ⊆ Y then F (X) ≤ F (Y ).

(ii) If η ≤ ϑ has uncountable cofinality, then there is a club C ⊆ η such that F (C) = η. This
follows from the last theorem in section 7; note that τ := cf(η) < ℵω, so 2τ < ℵω < ℵη.

(iii) If X has order type ω1, then there exists γ < supX such that F (X ∩ γ) = F (X). This
follows from localization theorem. Also note that F (X) ≥ supX always holds.

Suppose for contradiction that ϑ ≥ ω4. Let ⟨Cα : α ∈ Eω3
ω1 ⟩ be a club guessing sequence. Let

(Mα)α<ω3 be a continuous chain of elementary sub-models such that |Mα| = ω3, Mα ∩ ω4 ∈ ω4,
(Mβ : β ≤ α) ∈ Mα+1, M0 contains the club guessing sequence and the function F ; note that each
Cα is in M0 but pcf(A) ̸⊆ M0. Let ηα = Mα ∩ ω4, so η = supα<ω3 ηα satisfies ω3 < η < ω4 ≤ ϑ,
and has cofinality ω3; by (ii) there is a club C ⊆ η such that F (C) = η. The intersection of C with
{ηα : α < ω3} is also a club; by club guessing there exists γ ∈ Eω3

ω1 such that Y := {ηα : α ∈ Cγ} ⊆ C.
By (iii) there exists β < γ such that if X = {ηα : α ∈ Cγ ∩ β} then F (X) = F (Y ) ≥ supY = ηγ .

We claim that X ∈ Mγ . First we have Cγ ∈ M0 ⊆ Mγ ; although the function α 7→ ηα is
not in Mγ , its restriction to β is, because (Mα : α < β) ∈ Mβ+1 ⊆ Mγ . Hence F (X) ∈ Mγ ; on
the other hand F (X) = F (Y ) ≤ F (C) = η < ω4, which means F (X) < sup(Mγ ∩ ω4) = ηγ , a
contradiction.
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